

Different mechanisms of Ca^{2+} -handling following nicotinic acetylcholine receptor stimulation, P_{2U} -purinoceptor stimulation and K^+ -induced depolarization in C2C12 myotubes

¹R.H. Henning, M. Duin, J.P. van Popta, A. Nelemans & A. den Hertog

Groningen Institute for Drug Studies, Department of Clinical Pharmacology, University of Groningen, Bloemsingel 1, 9713 BZ Groningen, The Netherlands

- 1 The increase in intracellular Ca^{2+} on nicotinic acetylcholine receptor (nAChR) stimulation, P_{2U} -purinoceptor stimulation and K^+ -induced depolarization was investigated in mouse C2C12 myotubes by use of fura-2 fluorescence to characterize the intracellular organisation of Ca^{2+} releasing stores and Ca^{2+} -entry process.
- 2 Stimulation of nAChRs with carbachol induced a rapid rise in internal Ca^{2+} (EC₅₀=0.85±0.09 μ M), followed by a sustained phase. The Ca^{2+} response evoked by carbachol (10 μ M) was completely blocked by the nAChR antagonist, pancuronium (3 μ M), but was not affected by the muscarinic antagonist, atropine (3 μ M), or under conditions when Ca^{2+} entry was blocked by La³⁺ (50 μ M) or diltiazem (10 μ M). Addition of pancuronium (3 μ M) during the sustained phase of the carbachol-evoked response did not affect this phase.
- 3 Stimulation of P_{2U} purinoceptors with ATP (1 mM) induced a somewhat higher biphasic Ca^{2+} response (EC₅₀ of the rapid phase: $8.72\pm0.08~\mu\text{M}$) than with carbachol. Pretreatment with La³⁺ abolished the sustained phase of the ATP-induced Ca^{2+} response, while the response was unaffected by diltiazem or pancuronium.
- 4 Stimulation of the cells with high K^+ (60 mM), producing the same depolarization as with carbachol (10 μ M), induced a rapid monophasic Ca²⁺ response, insensitive to diltiazem, pancuronium or La³⁺.
- 5 Under Ca²⁺-free conditions, the sustained phase of the carbachol- and ATP-evoked responses were abolished. Pre-emptying of depolarization-sensitive stores by high K⁺ under Ca²⁺-free conditions did not affect the carbachol- or ATP-evoked Ca²⁺ mobilization and vice versa. Preincubation of the cells with ATP in the absence of extracellular Ca²⁺ decreased the amplitude of the subsequent carbachol-induced Ca²⁺ response to 11%, while in the reverse procedure the ATP-induced response was decreased to 65%. Ca²⁺ mobilization evoked by simultaneous addition of optimal concentrations of carbachol and ATP was increased compared to levels obtained with either agonist.
- 6 Preincubation with high K^+ under normal conditions abolished the sustained phase of the ATP-evoked Ca^{2^+} response. The carbachol response consisted only of the sustained phase in the presence of high K^+ .
- 7 The carbachol-induced Ca^{2+} response was completely abolished under low Na^+/Ca^{2+} -free conditions, while under low Na^+ conditions only a sustained Ca^{2+} response was observed. The ATP- and K^+ -induced responses were changed compared to Ca^{2+} -free conditions.
- 8 ATP (300 μM) induced the formation of Ins(1,4,5)P₃ under Ca²⁺-free conditions with a comparable time course to that found for the rise in internal Ca²⁺. In contrast to ATP, carbachol (10 μM) did not affect Ins(1,4,5)P₃ levels under Ca²⁺-free conditions.
 9 It is concluded that the Ca²⁺ release from discrete stores of C2C12 myotubes is induced by
- 9 It is concluded that the Ca^{2+} release from discrete stores of C2C12 myotubes is induced by stimulation of nAChRs, P_{2U} -purinoceptors and by high K^+ . Only the P_{2U} -purinoceptor and nAChR activated stores show considerable overlap in releasable Ca^{2+} . Sustained Ca^{2+} -entry is activated by stimulation of nAChRs and P_{2U} -purinoceptors via separate ion-channels, which are different from the skeletal muscle nAChR-coupled cation-channel.

Keywords: Calcium; P₂-purinoceptor; nucleotide receptor; nicotine acetylcholine receptor; C2C12 myotubes; intracellular calcium store; Ins(1,4,5)P₃

Introduction

The increase in intracellular Ca²⁺ of skeletal myotubes has been shown to modulate important functional changes in these cells related to neurotransmission. A short-term increase in cellular Ca²⁺ enhances the rate of desensitization of nicotine acetylcholine receptors (nAChRs; Miledi, 1980), while a long-term increase in Ca²⁺ is involved in down-regulation of nAChRs (Smilowitz et al., 1988; Klarsfeld et al., 1989;

Bursztajn et al., 1991) and synthesis of specific acetylcholinesterase isoenzymes (Inestrosa et al., 1983; Fernandez & Hodges-Savola, 1992).

Stimulation of myotubes with the transmitter of motor neurones (acetylcholine), its co-transmitter ATP (Silinsky, 1975) and depolarization of the myotubes have all been reported to increase intracellular Ca²⁺ in myotubes. In myotubes of different origin, the ACh-sensitive receptor which is involved in augmenting Ca²⁺ has invariably been characterized as the muscle type nicotinic receptor (Giovannelli et al., 1991; Grassi et al., 1993). Characterization of ATP-sensitive re-

¹ Author for correspondence.

ceptors (P₂-purinoceptors) is still largely based on their sensitivity to ATP analogues (Cusack & Hourani, 1990), because of the lack of a specific antagonist at cloned receptors (Webb *et al.*, 1993; Lustig *et al.*, 1993). With the exception of mouse C2C12 myotubes, in which the augmentation of Ca²⁺ is mediated by a P_{2U}-purinoceptor (Henning *et al.*, 1993a), the P₂-purinoceptors involved in other types of myotubes do not fit the proposed subclassification (Cusack & Hourani, 1990).

C2C12 myotubes possess both a ryanodine-sensitive Ca²⁺ store (sarcoplasmic reticulum) and inositol-(1,4,5) trisphosphate (Ins(1,4,5)P₃)-sensitive Ca²⁺ stores, as judged by functional responses (Grassi et al., 1993; Henning et al., 1993a) and expression of ryanodine and Ins(1,4,5)P₃ receptors (Arai et al., 1992; De Smedt et al., 1994). Stimulation of both nAChR and P_{2U} -purinoceptors in C2C12 myotubes increases intracellular Ca^{2+} , due to mobilizing Ca^{2+} from internal stores as well as initiating Ca2+-entry from the extracellular space. The depolarization caused by extracellular application of high K + to the myotubes is thought to cause Ca2+ release from the ryanodinesensitive store via calcium-induced calcium release following the influx of Ca²⁺ via voltage-sensitive L-type Ca²⁺-channels and through a direct molecular interaction between the L-type Ca²⁺ channel and the ryanodine receptor (Schneider & Chandler, 1973; Meissner, 1994). It has been proposed that both nAChRs (Giovannelli et al., 1991; Grassi et al., 1993) and P_{2U}-purinoceptors (Henning et al., 1993a) activate the phosphoinositide pathway to mobilize Ca2+ from internal stores in C2C12 myotubes, which would be remarkable as both types represent receptors from very different families (Noda et al., 1983; Webb et al., 1993; Lustig et al., 1993). The similarities of the signal transduction pathway activated by nicotinic and P2purinoceptor agonists or high K+ were characterized and their interaction was studied by measuring cytoplasmic Ca2+ in C2C12 myotubes.

Methods

Cell culture

C2C12 cells, a murine myoblast cell line (Yaffee & Saxel, 1977) were obtained from the American Tissue Type Collection, Rockville, U.S.A. and cultured on glass cover slips at 37°C in Dulbecco's modified essential medium, 7 mm NaHCO₃ and 10 mm HEPES (DMEM) supplemented with 10% foetal calf serum. When cells reached confluence, the medium was changed to DMEM supplemented with 5% horse serum. Myotubes were used 5-7 days after initiating myoblast fusion.

Intracellular Ca2+ measurement

Cytoplasmic free Ca2+ levels were determined by fura-2 fluorescence. Cells plated on glass coverslips were loaded with fura-2-AM (3 μM) for 45 min at 37°C in buffer supplemented with bovine serum albumin (BSA) (0.2%). Before the experiment, cells were washed three times with the buffer of the following composition (mM): NaCl 145, KCl 6, CaCl₂ 1.0, MaCl 0.5 alucose 10. HEPES 10 (pH 7.4). In the Ca²⁺-free MgCl₂ 0.5, glucose 10, HEPES 10 (pH 7.4). In the Ca² buffer, CaCl₂ was omitted and EGTA (0.4 mm) and MgCl₂ (5.2 mm) were added. In the low Na²⁺ buffers, 130 mm NaCl was replaced by glucaminchloride. Recordings were made at excitation wavelengths of 340 and 380 nm and an emission wavelength of 510 nm at 22°C using a fluorescence spectrophotometer (Aminco Bowman 2). Application of the agonists and antagonists did not change the autofluorescence of the myotubes. The actual internal Ca²⁺ concentration of the myotubes could not be determined, because the cells instantly peeled off the cover slips after treatment with permeabilizing agents (e.g. Triton-X or saponin). Therefore, the data are expressed as the ratio between the two wavelengths representing Ca²⁺-free (380 nm) and Ca²⁺-bound (340 nm) fluorescent probe.

$Ins(1,4,5)P_3$ measurement

Ins(1,4,5)P₃ contents of the myotubes was assessed by mass measurement with a radioligand binding assay as described by Henning *et al.* (1993a). Before the experiment, the cells were washed two times in the standard buffer and a final wash was performed with the Ca^{2+} -free buffer. The reaction was stopped by addition of trichloroacetic acid (TCA) after removing the buffer. TCA was extracted 3 times with water-saturated diethylether, the samples were neutralized with 5%, KOH and stored at -40° C. A standard curve for determination of Ins(1,4,5)P₃ mass was constructed with ether-extracted TCA solution.

Data analysis

Data are presented as mean \pm s.e.mean and are considered statistically different at P < 0.05 (paired or unpaired Student's t test). Concentration-response curves were fitted to the averaged data by a least-squares non-linear regression programme (SigmaPlot 4.0, Jandel Scientific).

Drugs

Fura-2-AM were obtained from Boehringer, Manneheim (Germany). Adenosine 5'-triphosphate (ATP) was obtained from Serva, Heidelberg (Germany). Carbachol was obtained from Sigma, St Louis (U.S.A.).

Results

Stimulation of differentiated C2C12 myotubes with the nonhydrolyzable nAChR agonist, carbachol (10 µM) induced a rapid increase of intracellular Ca2+, followed by a sustained phase (Figure 1a). The increase in intracellular Ca²⁺ evoked by carbachol (10 μ M) was blocked by preincubation of the cells with the nicotinic antagonist, pancuronium (3 μ M; n=5; not shown), but was not affected by the muscarinic antagonist, atropine (3 μ M; n = 3; not shown). Stimulation of the myotubes with ATP (1 mm) evoked a similar biphasic change in intracellular Ca²⁺ to that observed with carbachol (Figure 1b). The amplitude of the rapid phase of the response was used to determine the concentration-response relationship for carbachol and ATP (Figure 1c). Stimulation of the myotubes with ATP produced a larger maximum (Figure 2; Table 1) and a larger EC₅₀ was observed compared to carbachol-stimulated cells (ATP: EC₅₀: $8.7 \pm 0.1 \, \mu$ M, carbachol: EC₅₀ $0.85 \pm 0.08 \, \mu$ M).

Responses in the absence of external Ca2+

The basal intracellular Ca²⁺ was decreased slightly under Ca²⁺free conditions (10 min; fluorescence 340/380 ratio under normal conditions: 1.04 ± 0.02 , under Ca^{2+} -free conditions: 0.91 ± 0.04 ; $n \ge 12$). In the absence of extracellular Ca²⁺, the sustained phase of the carbachol (10 µM) and ATP-evoked Ca²⁺ response was abolished and maximal amplitudes were decreased to 67% and 72% compared to values obtained in the presence of external Ca2+, respectively (Figures 2a [left panel], 3a [right panel]; Table 1). It is known that stimulation of C2C12 myotubes with carbachol (10 μ M) depolarizes the myotubes by about 40 mV (Henning et al., 1994). To study the contribution of this carbachol-induced depolarization to the Ca²⁺ mobilization, carbachol (10 μ M) and high K⁺ (60 mM), known to produce similar depolarizations, were compared (Henning et al., 1994). Under Ca²⁺-free conditions, stimulation of the cells with high K⁺ induced a rapid monophasic increase in internal Ca^{2+} (Figure 2a [right panel]). The carbachol (10 μ M)-evoked Ca^{2+} response was abolished in the presence of high K⁺ (60 mM) and vice versa (Figure 2a). It was investigated whether this phenomenon was due to activation of a common Ca² store. The myotubes were stimulated with the agonist, followed by a brief wash (3 min) with Ca2+-free solution allowing repolarization without refilling of the Ca²⁺ stores, and subsequently stimulated for the second time. Following this para-

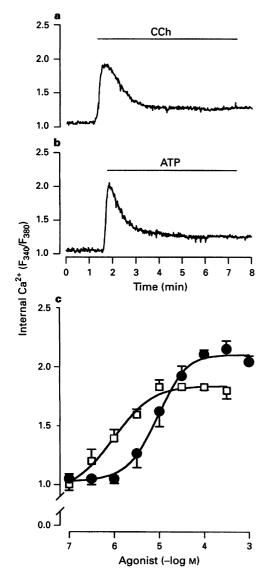


Figure 1 The effect of carbachol (CCh) and ATP on intracellular Ca^{2^+} in C2C12 myotubes in the presence of external Ca^{2^+} , using fura-2 fluorescence. (a) Typical responses caused by carbachol $(10\,\mu\mathrm{M})$; (b) typical responses to ATP (1mM); (c) concentration-dependent changes in the amplitude of the peak of the increase in fluorescence (mean \pm s.e.mean) caused by carbachol (\square , $n \ge 12$) and ATP (\blacksquare , $n \ge 9$). Data are expressed as fluorescence ratio ($R = F_{340}/F_{380}$).

digm, repeated stimulation of the cells with the same agonist, i.e. carbachol (10 μ M) or high K⁺ (60 mM), did not evoke a second rise in internal Ca²⁺ (Figure 2b). In contrast, stimulation with high K⁺ followed by the brief wash and subsequent stimulation with carbachol (10 μ M) produced a Ca²⁺ response with the same amplitude as that observed without the high K response in advance (Figure 2c [right panel]). In the reverse experiment, when cells were stimulated with carbachol (10 μ M) followed by the wash, stimulation with the high K⁺ (60 mm) produced a normal Ca²⁺ response (Figure 2c [left panel]). After cessation of the first carbachol-induced depolarization by blocking its nAChRs with pancuronium instead of washing, the subsequent Ca2+ response on stimulation with high K+ was also restored (not shown). Involvement of the depolarization in Ca2+ mobilization was further investigated by preventing the carbachol-induced depolarization under low Na⁺/Ca²⁺-free conditions (Henning et al., 1994). Under these conditions, the carbachol-evoked Ca²⁺ mobilization was abolished (Figure 2d [left panel]), whereas the response induced by high K^+ was unaffected (Figure 2d [right panel]).

To study the interaction between the ATP-, carbachol- and high K⁺-evoked Ca²⁺ release processes, the myotubes were stimulated with one of the agonists followed by subsequent addition of the other agonist under Ca2+-free conditions. Prestimulation of the cells with carbachol (10 μ M) reduced the amplitude of the Ca²⁺ response evoked by ATP (1 mm) to 65% of its control value (Figure 3a [left panel]; Table 1). In the reverse procedure, the Ca2+ response evoked by carbachol (10 µM) was strongly decreased to 11% after prestimulation with ATP (1 mm; Figure 3a [right panel]; Table 1). Simultaneous stimulation of the cells with ATP (1 mm) and carbachol (10 μ M) resulted in a significant increase in the amplitude of the Ca²⁺ response compared to that evoked by stimulation with either agonist (Table 1). The amplitude of the response evoked by simultaneous addition of ATP and carbachol amounted to 76% of their summed value (Table 1). The Ca²⁺ response induced by ATP (1 mm) was unaffected in the presence of high K⁺ (60 mM) and vice versa (Figure 3b).

Responses in the presence of external Ca²⁺

In contrast to the biphasic Ca^{2+} response obtained with ATP and carbachol, high K^+ induced a fast monophasic increase in cellular Ca^{2+} under normal conditions (Figure 4a [right panel]). Interaction between carbachol-, ATP- and high K^+ evoked responses was further investigated by stimulating the myotubes with one of the agonists followed by subsequent addition of another agonist. In the presence of carbachol (10 μ M), the monophasic response to high K^+ was completely abolished (Figure 4a [left panel]). In the reverse experiment, stimulation of the cells with carbachol (10 μ M) induced a sustained rise in internal Ca^{2+} only in the presence of high K^+ (60 mM; Figure 4a [right panel]). In the presence of high K^+ (60 mM), the rapid phase of the ATP (1 mM)-induced Ca^{2+}

Table 1 The action of nAChR and P₂-purinoceptor agonist on cytoplasmic Ca²⁺ in C2C12 myotubes under normal and Ca²⁺-free conditions

	Ca ²⁺ conditions		Ca ²⁺ -free conditions	
Agonist	peak	plateau	peak	plateau
ATP (1 mм)	1.11 ± 0.04	0.31 ± 0.05	0.80 ± 0.05	_
CCh (10 μм)	0.83 ± 0.07	0.21 ± 0.02	0.56 ± 0.05	-
ATP after CCh	1.02 ± 0.07	-	0.52 ± 0.06	-
CCh after ATP	0.52 ± 0.05	_	0.06 ± 0.02	_
CCh + ATP	1.42 ± 0.10	0.23 ± 0.05	1.04 ± 0.10	_
$La^{3+} + ATP$	1.10 ± 0.06	_	ND	ND
La ³⁺ CCh	1.00 ± 0.15	0.28 ± 0.04	ND	ND

Values are expressed as the increase in fluorescence ratio (F340/380) over basal levels ($n \ge 12$, except La³⁺: n = 5). Basal fluorescence ratio under normal conditions measured 1.04±0.02 and under Ca²⁺-free conditions 0.91±0.04. The plateau was measured 4 min after addition of the agonist. CCh=carbachol; ND=no data obtained; — =no increase over basal levels was detected (P > 0.05). La³⁺ (50 μ M) was added 8 min in advance.

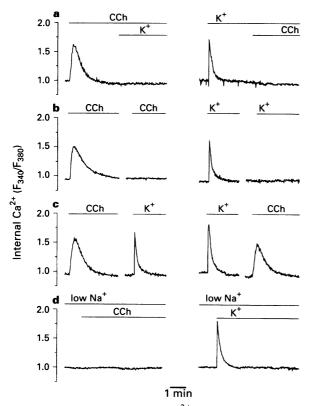


Figure 2 Changes in intracellular Ca^{2^+} evoked by carbachol and high K^+ in the absence of external Ca^{2^+} . (a) Abolition of the response to high K^+ (60 mm) in the presence of carbachol (10 μ m; left panel), and vice versa (right panel); (b) a second stimulation by carbachol (10 μ m) did not produce a Ca^{2^+} response after termination of the preceding carbachol-evoked response by washing under Ca^{2^+} free conditions (left panel). Similarly, a second stimulation with high K^+ was not effective, after a preceding K^+ response followed by a wash under Ca^{2^+} -free conditions (right panel); (c) The second response to carbachol was unaffected if the preceding high K^+ -induced response was terminated by a brief wash with Ca^{2^+} -free medium (left panel). Similarly, the high K^+ -evoked response was unaffected after termination of the preceding carbachol response by washing under Ca^{2^+} -free conditions; (d) The response to carbachol (10 μ m) was completely abolished under low Na^{2^+} condition (15 mm; left panel), whereas the response evoked by high K^+ (60 mm) was unaffected under these conditions (right panel). Data are expressed as fluorescence ratio ($R = F_{340}/F_{380}$); tracings are representative of 5 or more experiments.

response was unaffected, but the sustained phase was abolished (Figure 4b [right panel]). The high K $^+$ (60 mM) response was unaffected in the presence of ATP (1 mM; Figure 4b [left panel]). Prestimulation with carbachol reduced the amplitude of the second Ca²⁺ response evoked by ATP (1 mM) to 92% and abolished its sustained phase (Figure 4c [right panel]; Table 1). In the reverse experiment, prestimulation with ATP (1 mM) reduced the amplitude of the carbachol (10 μ M)-evoked response to 63% and also abolished the second sustained phase (Figure 4c [left panel]; Table 1).

The carbachol and ATP-induced Ca^{2+} responses were studied in the presence of diltiazem, pancuronium and La^{3+} to determine common features. Diltiazem (10 μ M), a blocker of voltage-operated Ca^{2+} channels, did not affect the carbachol (10 μ M), ATP (1 mM) or K⁺-induced Ca^{2+} response with respect to their rapid and sustained phases (not shown; $n \ge 4$). Preincubation or addition of La^{3+} (50 μ M), assumed to block receptor-activated Ca^{2+} -entry, did not affect the carbachol-induced response (Figure 5a [left panel]; Table 1). In contrast, the sustained phase of the ATP response was abolished by addition of La^{3+} (Figure 5a [right panel]; Table 1). The Ca^{2+} -entry through the nAChR coupled cation-channels was investigated by adding pancuronium during the sustained phase

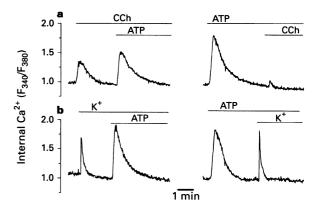


Figure 3 Changes in intracellular Ca^{2+} evoked by carbachol, ATP and high K^+ in the absence of external Ca^{2+} . (a) The response to carbachol ($10\,\mu\mathrm{M}$) showing abolition of the sustained phase, followed by the response to ATP (1 mM; left panel). The response evoked by ATP (1 mM) also showing abolition of the sustained phase, followed by the response to carbachol ($10\,\mu\mathrm{M}$; right panel); (b) the response to high K^+ (60 mM), followed by the response evoked by ATP (1 mM; left panel). The ATP-induced response, followed by the response to high K^+ (60 mM; right panel). Data are expressed as fluorescence ratio ($R=F_{340}/F_{380}$); tracings are representative of 6 or more experiments.

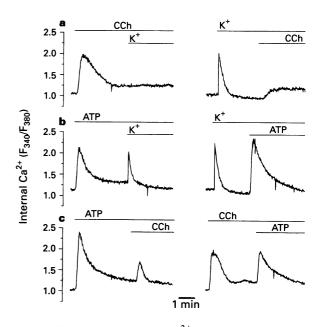


Figure 4 Changes in intracellular Ca^{2+} evoked by carbachol, ATP and high K^+ under normal conditions. (a) Abolition of the response evoked by high K^+ (60 mM) in the presence of carbachol ($10\,\mu\text{M}$; left panel). In the presence of high K^+ (60 mM), carbachol ($10\,\mu\text{M}$) induced a sustained response (left panel); (b) high K^+ evoked response was unaffected in the presence of ATP (1 mM; left panel). The sustained phase of the ATP-induced response was reduced in the presence of high K^+ (right panel); (c) decrease in amplitude and abolition of the sustained phase of the carbachol ($10\,\mu\text{M}$)-evoked response in the presence of ATP (1 mM; left panel). Similarly, the response of ATP (1 mM) was reduced in amplitude and lacked the sustained phase in the presence of carbachol ($10\,\mu\text{M}$); right panel). Data are expressed as fluorescence ratio ($R = F_{340}/F_{380}$); tracings are representative of 7 or more experiments.

of the carbachol response. Pancuronium by itself did not affect intracellular Ca^{2+} (not shown) and addition of pancuronium during the sustained phase of carbachol-evoked Ca^{2+} response did not affect this phase either (Figure 5b [left panel]). In contrast, preincubation with pancuronium (3 μ M) completely



Figure 5 Changes in intracellular Ca^{2+} evoked by carbachol and ATP in the presence of extracellular Ca^{2+} . (a) The sustained phase of the response induced by carbachol ($10\,\mu\rm M$) was unchanged by addition of La^{3+} ($50\,\mu\rm M$; left panel), while the sustained phase following ATP (1 mM) was inhibited under these conditions (right panel); (b) administration of the nAChR antagonist, pancuronium ($3\,\mu\rm M$) during the sustained phase did not affect this phase of responses evoked by carbachol ($10\,\mu\rm M$, left panel) or ATP (1 mM; right panel). (c) Augmentation of the carbachol-evoked response under low Na+ conditions ($15\,\rm mM$; left panel) is partly blocked by administration of pancuronium during this phase ($3\,\mu\rm M$; left panel). Low Na+ conditions or pancuronium ($3\,\mu\rm M$) did not affect the ATP-induced response (right panel). Data are expressed as fluorescence ratio ($R=F_{340}/F_{380}$); tracings are representative of 6 or more experiments.

abolished the biphasic Ca²⁺ response induced by carbachol (10 μ M; n=5; not shown). The ATP-induced response (Figure 5b [right panel]) or the high K⁺ evoked responses were not affected by pancuronium (3 μ M; not shown).

The carbachol and ATP responses were also investigated under low Na⁺ conditions (15 mM). When carbachol (10 μ M) induced a slow and sustained increase in intracellular Ca²⁺ (Figure 5c [left panel]). The amplitude of the sustained phase was increased compared to this phase under normal Na⁺ conditions (Figure 5b [left panel]). This sustained phase observed under low Na⁺ conditions was partially sensitive to pancuronium (3 μ M; Figure 5c [left panel]), in contrast with that under normal conditions (Figure 5b [left panel]). The ATP-induced biphasic Ca²⁺ response was not affected under low Na⁺ conditions (Figure 5c [right panel]).

$Ins(1,4,5)P_3$ formation

Involvement of the phospholipase C pathway in the release of internal Ca^{2+} was determined by measuring the $Ins(1,4,5)P_3$ formation after stimulation of the cells with carbachol or ATP under Ca^{2+} -free conditions. Incubation of the myotubes for 5 min with ATP (300 μ M) induced a transient 4 fold increase in $Ins(1,4,5)P_3$, showing a peak after about 45 s (Figure 6). In contrast, stimulation of the cells with carbachol (10 μ M) did not affect basal $Ins(1,4,5)P_3$ levels (Figure 6).

Discussion

These results show that nAChR stimulation, P₂-purinoceptor stimulation and high external K⁺ increase the internal Ca²⁺ concentration in C2C12 myotubes. Both carbachol and ATP

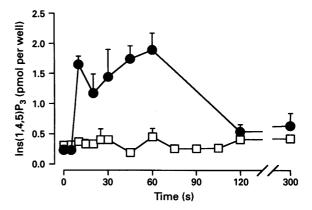


Figure 6 The levels of $Ins(1,4,5)P_3$ following stimulation of the myotubes with carbachol (\Box , $10 \,\mu\text{M}$) or ATP (\odot , $1 \,\text{mM}$) in the absence of external Ca^{2+} . Data are expressed as mean \pm s.e.mean (n=5; determined in duplicate).

evoked a biphasic response characterized by a rapid rise in intracellular Ca^{2+} followed by a sustained phase, whereas high K^+ induced a fast transient increase in Ca^{2+} .

High K^+ -induced Ca^{2+} response

The high K⁺-induced transient rise in internal Ca²⁺ is commonly attributed to depolarization of the myotubes activating voltage-operated L-type Ca²⁺-channels. In turn, ryanodine receptors on the sarcoplasmic reticulum are activated by Ca2+ entering the cell and via direct molecular interaction of the Ca2+-channel with the ryanodine receptor (Schneider & Chandler, 1973; Meissner, 1994). In accord, the high K⁺ induced Ca2+ response was abolished if the cells were depolarized in advance. When Ca2+-entry is prevented under Ca2+free conditions or with diltiazem, the high K+-induced Ca2+ response is due to the remaining direct molecular interaction between the Ca2+ channel and the ryanodine receptor (Schneider & Chandler, 1973; Meissner, 1994) under these conditions. It is noted that the contribution of Ca2+-entry to the high K+-induced response is difficult to assess, in view of the limited time resolution of the Ca²⁺ measurement.

nAChR-mediated Ca2+ response

The Ca²⁺ response observed with carbachol was evoked via nicotinic AChRs, for it was blocked by pretreatment with the receptor antagonist, pancuronium, while the muscarinic antagonist, atropine, was not effective. It is known that stimulation of C2C12 myotubes with carbachol (10 μ M) induces a sustained depolarization, due to Na+-influx through the nAChR coupled cation-channel. This depolarization is comparable to that caused by high K⁺ (60 mM; Henning et al., 1994). Nevertheless, the nAChR-mediated Ca²⁺ response is quite different from that evoked by high K⁺. The Ca²⁺ response caused by second addition of carbachol was completely blocked by pre-stimulation of the cells with the same agonist, if refilling of the Ca2+ stores was prevented in the absence of external Ca2+. The same was observed when high K+ was used instead of carbachol. However, a second stimulation with carbachol or high K+ was unaffected by prestimulation with the other agonist. Therefore, carbachol and high K+ mobilize Ca2+ from different internal stores. As it is generally assumed that high K⁺ causes Ca²⁺ release from the ryanodine-sensitive store, our observations imply that the nAChR-activated Ca² stores are different from the ryanodine store, in agreement with a previous report (Grassi et al., 1993). The nAChR mediated Ca²⁺ mobilization was abolished by preventing the Na⁺-influx via the receptor gated channels by reducing the Na⁺ gradient or by decreasing the electrical gradient by high K + conditions. It is tempting to speculate that the Na+-influx triggers emptying of the internal store (Grassi et al., 1993). Recently, increased cytosolic Na⁺ has been shown to augment thapsigargin-induced Ca²⁺ release in smooth muscle cells (Borin et al., 1994). Whether a similar mechanism is involved in the nAChR-mediated mobilization of Ca²⁺ from internal stores remains to be investigated. Involvement of inositol phosphates in nAChR-mediated Ca²⁺ mobilization, as suggested previously (Giovannelli et al., 1991; Grassi et al., 1993), seems unlikely in view of the absence of Ins(1,4,5)P₃ formation. Another implication of our observations is that nAChR stimulation and the concomitant decrease in membrane potential does not empty the depolarization sensitive Ca²⁺ store. This might be due to the relatively slow development of the depolarization compared to that evoked by high K⁺, causing inactivation of L-type Ca²⁺ channels.

In the presence of external Ca²⁺, stimulation of nAChRs

also induced Ca2+-entry, as represented by the sustained phase of the Ca²⁺ response. The nAChR-mediated Ca²⁺-entry is not due to Ca²⁺-gating through the nAChR-channel, for the sustained phase was unaffected by administration of pancuronium during this phase. However, the sustained phase is activated through stimulation of nAChRs because pretreatment with pancuronium completely prevented Ca2+-entry. Further, the nAChR-mediated Ca2+-entry is independent of the membrane depolarization or Na+-influx, for the sustained Ca2+ response was still observed under low Na+ conditions and high K+ depolarization. Moreover, the sustained phase of the carbachol-induced response under low Na+ conditions was increased in amplitude and partially sensitive to pancuronium. Both phenomena can be explained, assuming a substantial additional Ca2+-entry through nAChR gated channels becoming prominent under low Na+ conditions. Further, voltage-operated Ca2+-channels are apparently not involved in the activation of nAChR-mediated Ca2+-entry for the sustained phase of the Ca2+ response was unaffected by diltiazem or by depolarization of the cells. It is also unlikely that the nAChR-evoked Ca²⁺-entry is dependent on the filling state of the Ca2+ stores (Putney & Bird, 1993; Randriamampita & Tsien, 1993), because Ca2+-entry was still observed under conditions blocking Ca2+ mobilization such as low external Na+ or high K+. Finally, the nAChR-mediated Ca2+-entry in C2C12 cells was not affected by La³⁺, which supports the idea that a process is involved which differs from Ca²⁺-entry induced by stimulation of G-protein coupled receptors activating phospholipase C (Den Hertog et al., 1992; Henning et al., 1993a). An intriguing possibility explaining nAChR mediated Ca²⁺-entry is expression of a nAChR α-subunit different from the skeletal muscle type α_1 -subunit giving rise to the formation of nAChR channels which have a high Ca2+ permeability and which are sensitive to pancuronium, as observed in neuronal nAChRs (Sargent, 1993). Recently, rat skeletal muscle myotubes have been reported to express neuronal α_4 -, α_5 - and α_7 nAChR subunits (Corriveau et al., 1995), some of which are involved in formation of neuronal nAChR channels which have a high Ca2+ permeability and are insensitive to pancuronium (Sargent, 1993).

P_2 -purinoceptor-mediated Ca^{2+} response

At least three different P₂-purinoceptors are present in mouse C2C12 myotubes: a P_{2U}-purinoceptor coupled to phospholipase C (Hemming *et al.*, 1992; 1993a) and two unclassified P₂-purinoceptors activating Na⁺-influx (Henning *et al.*, 1992) and the formation of cyclic AMP (Henning *et al.*, 1993b), respectively. Experiments using different purinoceptor agonists have

shown that the ATP-evoked increase in cytoplasmic Ca²⁺ in these cells is exclusively mediated by the nucleotide type P_{2U}-purinoceptor (Henning *et al.*, 1993a). The possibility was excluded that the small ATP-induced membrane depolarization caused by Na⁺-influx contributes to the internal rise in Ca²⁺ (Henning *et al.*, 1992), which is in agreement with the unaffected ATP-induced Ca²⁺ response observed under low Na⁺ conditions. Thus, stimulation of the P_{2U}-purinoceptor under Ca²⁺-free conditions resulted in a transient formation of Ins(1,4,5)P₃ associated with a rapid increase in internal Ca²⁺.

The maximum amplitude of the ATP-evoked rapid phase of the Ca²⁺ response as observed in the presence of external Ca²⁺ was decreased under Ca²⁺-free conditions. This need not imply that Ca²⁺-entry contributes to the rapid phase, as its reduction may be related to the decreased basal intracellular Ca²⁺ as observed under Ca²⁺-free conditions, affecting various steps in the Ca²⁺ mobilization process such as PLC activation (Uhing et al., 1986) or Ins(1,4,5)P₃ receptor function (Bezprozvanny et al., 1992).

Stimulation of the P_{2U}-purinoceptor also activated Ca²⁺-entry from the extracellular space, represented by the sustained Ca²⁺ response. The absence of the sustained phase in the presence of high K⁺ or carbachol suggests that the mechanism responsible for P_{2U}-purinoceptor-induced Ca²⁺-entry is dependent on the electro-chemical gradient and therefore voltage-dependent. Capacitive Ca²⁺-entry, following emptying of Ins(1,4,5)P₃ sensitive stores (Putney & Bird, 1993; Randriamampita & Tsien, 1993), has not been observed in C2C12 myotubes (Henning, unpublished). Thus the mechanism leading to Ca²⁺-entry on P_{2U}-purinoceptor is unknown. Possibly, arachidonic acid formed from diacylglycerol may act as a messenger to promote Ca²⁺-entry, as found on stimulation of PLC coupled receptors in DDT₁ MF-2 cells (van der Zee *et al.*, 1995).

Interaction between nAChR and P₂-purinoceptor

So far, the results show that activation of Ca²⁺ mobilization and entry are different following activation of nAChRs and P_{2U}-purinoceptors in mouse C2C12 myotubes. Nevertheless, interaction between these receptor-induced Ca²⁺ responses was observed. In particular, nAChR-evoked Ca²⁺ mobilization was significantly inhibited by prestimulation of P_{2U}-purinoceptors. This interaction is not necessarily caused by 'crosstalk' on the level of Ca²⁺ stores, but might also be due to nAChR desensitization following P_{2U}-mediated activation of protein kinase C (Huganir *et al.*, 1986). Further, the Ca²⁺-entry activated by stimulation of either receptor type was abolished by prestimulation of the other receptor. *In vivo*, the P₂-purinoceptor agonist ATP is released as a co-transmitter with acetylcholine (Silinsky, 1975). Therefore, the cross-talk between the two systems may serve to modulate skeletal muscle function.

In summary, it was shown that Ca^{2^+} release from discrete stores of C2C12 myotubes is induced by stimulation of nAChRs, P_{2U} -purinoceptors and by high K^+ . Only the P_{2U} -purinoceptor and nAChR activated stores show considerable overlap in releasable Ca^{2^+} . Sustained Ca^{2^+} -entry is activated by stimulation of nAChRs and P_{2U} -purinoceptors via separate ion-channels, which are different from the skeletal muscle nAChR-coupled cation-channel.

This study was sponsored by grant 903-42-004 from The Netherlands Organization for Scientific Research (NWO).

References

ARAI, M., OTSU, K., MACLENNAN, D.H. & PERIASAMY, M. (1992). Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. *Am. J. Physiol.*, 262, C614-C620.

BEZPROZVANNY, I., WATRAS, J. & EHRLICH, B.E. (1991). Bell-shaped calcium response curves of Ins(1,4,5)P₃- and calcium-gated channels from endoplasmic reticulum of cerebellum. *Nature*, 351, 751-754.

- BORIN, M.L., TRIBE, R.M. & BLAUSTEIN, M.P. (1994). Increased intracellular Na+ augments mobilization of Ca²⁺ from SR in vascular smooth muscle cells. *Am. J. Physiol.*, **266**, C311-C317.
- BURSZTAJN, S., SCHNEIDER, L.W., JONG, Y. & BERMAN, S.A. (1991). Calcium and ionophore A23187 stimulates deposition of extracellular matrix and acetylcholinesterase release in cultured myotubes. *Cell Tissue. Res.*, **265**, 95-103.
- CORRIVEAU, R.A., ROMANO, S.J., CONROY, W.G., OLIVA, L. & BERG, D.K. (1995). Expression of neuronal acetylcholine receptor genes in vertebrate muscle during development. J. Neurosci., 15, 1372-1383.
- CUSACK, N.J. & HOURANI, S.M.O. (1990). Subtypes of P₂-purinoceptors. Ann. N.Y. Acad. Sci., 603, 172-181.
- DE SMEDT, H., MISSIAEN, L., PARYS, J.B., BOOTMAN, M.D., MERTENS, L., VAN DEN BOSCH, L. & CASTEELS, R. (1994). Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J. Biol. Chem., 269, 21691-21698.
- DEN HERTOG, A., HOITING, B., MOLLEMAN, A., AKKER, J., DUIN, M. & NELEMANS, S.A. (1992). Calcium release from separate receptor specific intracellular stores induced by histamine and ATP in a hamster cell line. J. Physiol., 454, 591-607.
- FERNANDEZ, H.L. & HODGES-SAVOLA, C.A. (1992). Trophic regulation of acetylcholinesterase isoenzymes in adult mammalian skeletal muscle. *Neurochem. Res.*, 17, 155-124.
- GIOVANNELLI, A., GRASSI, F., MATTEI, E., MILEO, A.M. & EUSEBI, F. (1991). Acetylcholine induces voltage-independent increase of cytosolic calcium in mouse myotubes. *Proc. Natl. Acad. Sci. U.S.A.*, 88, 10069-10073.
- GRASSI, F., GIOVANNELLI, A., FUCILE, S. & EUSEBI, F. (1993). Activation of the nicotinic acetylcholine receptor mobilizes calcium from caffeine-insensitive stores in C2C12 mouse myotubes. *Pflügers Arch.*, 422, 591-598.
- HENNING, R.H., DUIN, M., DEN HERTOG, A. & NELEMANS, A. (1993a). Activation of the phospholipase C pathway by ATP is mediated exclusively through nucleotide type P₂-purinoceptors in C2C12 myotubes. *Br. J. Pharmacol.*, **110**, 747-752.
- HENNING, R.H., DUIN, M., DEN HERTOG, A. & NELEMANS, A. (1993b). Characterization of P₂-purinoceptor mediated cyclic AMP formation in mouse C2C12 myotubes. *Br. J. Pharmacol.*, 110, 133-138.
- HENNING, R.M., NELEMANS, S.A., VAN DE AKKER, J. & HERTOG, A. (1994). Induction of Na⁺/K⁺-ATPase activity by long-term stimulation of nicotinic acetylcholine receptors in C2C12 myotubes. *Br. J. Pharmacol.*, 111, 459-464.
- HENNING, R.H., NELEMANS, A., VAN DEN AKKER, J. & DEN HERTOG, A. (1992). The nucleotide receptors on mouse C2C12 myotubes. *Br. J. Pharmacol.*, 106, 853-858.
- HUGANIR, R.L., DELCOUR, A.H., GREENGARD, P. & HESS, G.P. (1986). Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. *Nature*, 321, 774-776.
- INESTROSA, N.C., MILLER, J.B., SILBERSTEIN, L., ZISKIND-CON-HAIM, L. & HALL, Z.W. (1983). Developmental regulation of 16S acetylcholinesterase and acetylcholine receptors in a mouse muscle cell line. *Exp. Cell. Res.*, 147, 393-405.

- KLARSFELD, A., LAUFER, R., FONTAINE, B., DEVILLERS-THIÉRY, A., DUBREUIL, C. & CHANGEUX, J.P. (1989). Regulation of muscle AChR α-subunit gene expression by electrical activity. Involvement of protein kinase C and Ca²⁺. Neuron, 2, 1236.
- LUSTIG, K.D., SHIAU, A.K., BRAKE, A.J. & JULIUS, D. (1993).
 Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc. Natl. Acad. Sci. U.S.A., 90, 5113-5117.
- toma cells. *Proc. Natl. Acad. Sci. U.S.A.*, **90**, 5113-5117. MEISSNER, G. (1994). Ryanodine/Ca²⁺ release channels and their regulation by endogenous effectors. *Annu. Rev. Physiol.*, **56**, 485-508.
- MILEDI, R. (1980). Intracellular calcium and desensitization of acetylcholine receptors. *Proc. R. Soc. (Biol).*, **209**, 447-452.
- NODA, M.H., TAKAHASHI, T., TANABE, M., TOYOSATO, S., KIKYOTANI, Y., FURUTANI, T., HIROSE, H., TAKASHIMA, S., INAYAMA, T., MIYATA & NUMA, S. (1983). Structural homology of *Torpedo californica* acetylcholine receptor units. *Nature*, 302, 528-532.
- PUTNEY, J.W. & BIRD, G.S. (1993). The signal for capacitative calcium entry. *Cell*, 75, 199-201.
- RANDRIAMAMPITA, C. & TSIEN, R.Y. (1993). Emptying of intracellular Ca²⁺ stores releases a novel small messenger that stimulates Ca²⁺ influx. *Nature*, **364**, 809-814.
- SARGENT, P.B. (1993). The diversity of neuronal nicotinic acetylcholine receptors. *Annu. Rev. Neurosci.*, 16, 403-443.
- SCHNEIDER, M.F. & CHANDLER, W.K. (1973). Voltage dependent charge movement in skeletal muscle: a possible step in excitation contraction coupling. *Nature*, 242, 244-246.
- SILINSKY, E.M. (1975). On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J. Physiol., 247, 145-162.
- SMILOWITZ, H., SMART, E., BOWIK, C. & CHANG, R.J. (1988). Regulation of the number of α-bungarotoxin binding sites in cultured chick myotubes by a 1,4 dihydropyridine calcium channel antagonist. J. Neurosci. Res., 19, 321-325.
- UHING, R.J., PRPIC, V., JIANG, H. & EXTON, J.H. (1986). Hormonestimulated polyphosphoinositide breakdown in rat liver plasma membrane. Role of guanine nucleotides and calcium. *J. Biol. Chem.*, 261, 2140-2146.
- WEBB, T.E., SIMON, J., KRISHEK, B.J., BATESON, A.N., SMART, T.G., KING, B.F., BURNSTOCK, G. & BARNARD, E.A. (1993). Cloning and fucntional expression of a brain G-protein-coupled ATP receptor. FEBS Lett., 324, 219-225.
- YAFFEE, D. & SAXEL, O. (1977). Serial passage and differentiation of myogenic cells isolated from dystrophic mouse muscle. *Nature*, **270**, 725-727.
- ZEE, L. VAN DER., NELEMANS, A. & DEN HERTOG, A. (1995). Arachidonic acid is functioning as a second messenger in activating the Ca²⁺ entry process on H₁-histaminoceptor stimulation in DDT₁ MF-2 cells. *Biochem. J.*, 305, 859-864.

(Received June 26, 1995 Revised November 28, 1995 Accepted January 4, 1996)